RTP, Rubidium Titanyl Phosphate, RbTiOPO4-manufacture,factory,supplier from China

(Total 24 Products for RTP, Rubidium Titanyl Phosphate, RbTiOPO4)
RTP crystal is widely used for Electro-Optic applications whenever low switching voltages are required. e.g. in laser Q-switching system with high frequency repetition, high power and narrow pulse width. RTP E-O devices are not only used in laser micromachining and laser ranging, but also in major scientific exploration projects due to their excellent comprehensive performance.As RTP is transparent from 400nm to 3.5µm, it can be used in multiple types of laser such as Er:YAG laser at 2.94µm with fairly good efficiency.
Свяжитесь с нами
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect.
Свяжитесь с нами
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Свяжитесь с нами
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable us to offer our customers complete, plug-and-play RTP Pockels cell assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Свяжитесь с нами
RTP possesses a large electro-optic impact for light propagating along either the x or y direction (electric powered along z). It functions right optical transparency from around 400nm to over 4µm. RTP offers a high resistance to optical damage with energy ~1Gw/cm2 for 1ns pulses at 1064nm. It is largely total lack of piezo-electric resonances at 200kHz and probable beyond. The primary distinction between RTP and BBO whilst used for Q-switching pertains to the common power degree at which the Q-switch is capable of be used practically.
Свяжитесь с нами
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (DKDP) are among the most widely-used commercial NLO materials, characterized by good UV transmission, high damage threshold, and high birefringence, though their NLO coefficients are relatively low. They are usually used for doubling, tripling or quadrupling of a Nd:YAG laser (at constant temperature).
Свяжитесь с нами
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P, DKDP) crystals are among the most widley used nonlinear crystals. Both of these crystals are routinely used for the doubling, triplingand quadrupling of Nd:YAG lasers at room temperatures.
Свяжитесь с нами
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Свяжитесь с нами
Potassium dihydrogen phosphate KH2PO4 (KDP) is a transparent dielectric material best known for its nonlinear optical and electro-optical properties. Because of its nonlinear optical properties, it has been incorporated into various laser systems for harmonic generation and optoelectrical switching.
Свяжитесь с нами
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. KDP are also excellent electro-optic (EO) crystals with high EO coefficients, thus popularly used as EO modulators and Pockels cells for Q-switched lasers.
Свяжитесь с нами
    Potassium dideuterium phosphate DKDP (KD * P) crystal has low optical loss, high extinction ratio, and excellent electro-optical performance. DKDP Pockels cells are made by using the longitudinal effect of DKDP crystals. The modulation effect is stable and the pulse width is small.
Свяжитесь с нами
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from 390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP (D>99% – WISOPTIC) is necessary to reach effective electro-optical response.
Свяжитесь с нами
KTP Pockels are based on hydrothermal-grown high resistivity KTP crystals overcomes the common electrochromism damage of flux-grown KTP. Hydrothermal-grown KTP crystals have better optical homogeneity and higher damage threshold comparing to RTP crystals. This KTP crystal has large effective electro-optic coefficients and lower half-wave voltage. The Q-switch is built utilizing thermally compensated double crystal designs.
Свяжитесь с нами
Diffusion Bonded Crystal (DBC) is a crystalline solid used in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Свяжитесь с нами
Main SpecificationsDimensionsLength3 ~ 150 mm (± 0.5 mm)Diameter2 ~ 10 mm (+0.00, -0.05 mm)Tm Concentration0.5 ~ 8.0 atm%Orientation[111] (± 1°)Wavefront Distortionλ/4 per inch @ 633 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2013 nm)
Свяжитесь с нами
Diffusion bonded crystal consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Свяжитесь с нами
Nd:YLF is an excellent crystal that is very suitable for working in mode-locked mode to obtain short pulse laser. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold. Nd:YLF crystal has obtained important applications in inertial confinement laser fusion research projects.
Свяжитесь с нами
High temperature phase of α-BBO Crystal (BaB2O4) is one of the excellent birefringent crystals. It is characterized by large birefringent coefficient and wide transmission window ranged from 189nm to 3500nm. Due to its high chemical stability and medium hardness, α-BBO is fabricated easily into many kinds of optical components.The physical, chemical, thermal and optical properties of α-BBO are similar to those of β-BBO.
Свяжитесь с нами
Nd: YLF (Nd:LiYF4) is a laser material that acts as an alternative to Nd:YAG. It is very suitable for working in mode-locked state to make pulse lasers at wavelength 1053nm, 1047nm, 1313nm, 1324nm and 1370 nm. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold.
Свяжитесь с нами
Barium Borate exists in three major crystalline forms: alpha, beta, and gamma. The low-temperature beta phase converts into the alpha phase upon heating to 925 °C. β-BBO differs from α-BBO by the positions of the barium ions within the crystal. Both phases are birefringent, however α-BBO has centric symmetry and thus does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Свяжитесь с нами
Bandpass Filters are used in a variety of industries, including machine vision,factory automation, security and surveillance, license plate recognition, medical and life science, agricultural inspection, aerial imaging, motion analysis, photography and cinematography.WISOPTIC's bandpass filters include mass collection of  dielectric-coated filters, colored glass filters, neutral density filters, spatial filters, and tunable optical filter based on liquid crystal technology. Specifically speaking, e.g.
Свяжитесь с нами
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect but are not parallel to each other. The most important parameters of a prism are the angle and material.  Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light and for determining the identity and structure of materials that emit or absorb light. An optical prism’s design determines how light interacts with it.
Свяжитесь с нами
Relate News
WISOPTIC is using its newly-set coating machine to do in-house vacuum coatings on crystals and optical components.With our own coating machine and technique, we can provide customers products with excellent quality, e.g. higher surface quality, higher transmittance, and higher LIDT etc.Sorts of dielectric coatings (e.g. AR, HR, PR) are available for crystals (KDP/DKDP, KTP, RTP, BBO, LBO, LN, Nd:YAG, etc) and optical components (laser windows, mirrors, PBS, etc).
1. 2   ~ 2.3 μm laser crystals doped with Tm3+ Compared with the 2 μm band (3F4 → 3H6) of Tm3+, the 2.3 μm laser operation based on the 3H4 → 3H5 transition of the Tm3+ doped laser medium has the following advantages: (1) ~790 nm LD is directly pumped to the upper energy level of the laser. Tm3+ has a strong absorption around 790 nm (directly corresponding to the 3H4 → 3H6 transition), which can match the emission wavelength of the current mature commercial AlGaAs LD, so as to realize high-performance LD pumping all-solid-state high-efficiency 2.3 μm laser operation.
Introduction High-power all-solid-state deep ultraviolet (DUV) lasers have many important applications in scientific research, medical diagnosis, and industrial manufacturing, such as Raman spectroscopy, photobioimaging, integrated circuit etching, and precision micromachining, due to their compact structure, high single-photon energy, and good long-term stability.
3 Functional laser damage evaluation and laser pretreatment technologyWhether it is microscopic defects or nanoscopic laser damage precursors, the distribution and amount in optical materials or components are closely related to the manufacturing process. Low-defect processing and manufacturing technologies have played an important role in promoting the manufacture of high-power laser materials and components. However, as the largest laser project, the ICF laser driver has the largest number and size of optical components so far.
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
Since defects induce laser damage, and defects are randomly distributed in optical components, the detection and evaluation of laser damage performance of optical components has become another important research content. The standard for laser damage threshold testing was established in the 1990s and has been continuously improved with the development of laser technology and optical materials.
04 Theoretical study of thermal properties The above experiment shows that the BBO crystal (www.wisoptic.com) generates serious heat in the process of frequency quadrupling. It is known that the energy band gap of the BBO crystal is 6.56 eV, while the single photon energy of 266 nm and 532 nm lasers is 4.66 eV and 2.33 eV respectively. Theoretically, the crystal does not have single photon absorption of 266 nm and 532 nm lasers.
Laser damage induced by microscopic defects in optical componentsNodule defect is a typical representative of microscopic defects, and it is one of the main discoveries in the study of laser damage to thin films in the 1990s. At present, a lot of research has been done on the electric field enhancement and damage characteristics of nodule defects and artificially implanted nodule defects. The damage mechanism of nodular defects has been deeply understood.The nodule defect is the main cause of damage to the fundamental frequency dielectric membrane element.
3.4 Laser pretreatment of DKDP component The laser-damaged precursor of DKDP crystals (provided by WISOPTIC) is in the material body, so it is different from the removal of surface nodule defects in dielectric films. Laser pretreatment cannot remove the precursors in the body, but can only reduce the thermodynamic response of the precursors under laser radiation by improving their absorption intensity. There are still different opinions on this mechanism.
x

Отправлено успешно

Мы свяжемся с вами как можно скорее

По адресу: