RTP Q-switch-manufacture,factory,supplier from China

(Total 24 Products for RTP Q-switch)
RTP possesses a large electro-optic impact for light propagating along either the x or y direction (electric powered along z). It functions right optical transparency from around 400nm to over 4µm. RTP offers a high resistance to optical damage with energy ~1Gw/cm2 for 1ns pulses at 1064nm. It is largely total lack of piezo-electric resonances at 200kHz and probable beyond. The primary distinction between RTP and BBO whilst used for Q-switching pertains to the common power degree at which the Q-switch is capable of be used practically.
Свяжитесь с нами
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a robust crystal material suitable for a wide range of E-O applications. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect.
Свяжитесь с нами
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable us to offer our customers complete, plug-and-play RTP Pockels cell assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Свяжитесь с нами
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from 390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP (D>99% – WISOPTIC) is necessary to reach effective electro-optical response.
Свяжитесь с нами
RTP crystal is widely used for Electro-Optic applications whenever low switching voltages are required. e.g. in laser Q-switching system with high frequency repetition, high power and narrow pulse width. RTP E-O devices are not only used in laser micromachining and laser ranging, but also in major scientific exploration projects due to their excellent comprehensive performance.As RTP is transparent from 400nm to 3.5µm, it can be used in multiple types of laser such as Er:YAG laser at 2.94µm with fairly good efficiency.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Свяжитесь с нами
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Свяжитесь с нами
KTP Pockels are based on hydrothermal-grown high resistivity KTP crystals overcomes the common electrochromism damage of flux-grown KTP. Hydrothermal-grown KTP crystals have better optical homogeneity and higher damage threshold comparing to RTP crystals. This KTP crystal has large effective electro-optic coefficients and lower half-wave voltage. The Q-switch is built utilizing thermally compensated double crystal designs.
Свяжитесь с нами
The EO Q-switch (Pockels cell) is an electro-optic device in which the crystal produces linear changes in the birefringence of the crystal (in contrast to the Kerr Effect, which is quadratic with E). Pockels cells are essential components in various optical devices such as Q-switches for lasers, free space electro-optical modulators, free space switches.   WISOPTIC use highly deuterated DKDP (KD*P) crystal (D%>99%) to make high quality Q-switches with high laser induced damage threshold.
Свяжитесь с нами
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Свяжитесь с нами
The improved hydrothermal-grown KTP crystal overcomes the common electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage threshold, large effective electro-optic coefficients and lower half-wave voltage.  KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Свяжитесь с нами
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Свяжитесь с нами
LiNbO3 (Lithium Niobate, LN) crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability. Among the EO crystals, LN and DKDP are the two primary material that have been practical. DKDP crystals can be easily grown with a high optical homogeneity, which can satisfy the requirement of a large caliber Pockels cell.
Свяжитесь с нами
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low piezoelectric ringing makes this Pockels cell attractive for the control of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Свяжитесь с нами
Lithium Niobate (LiNbO3) is widely used  in fiber communication devices as birefringent crystal and used as electro-optic modulator and Q-switch for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing optics. The transverse modulation is mostly employed for LiNbO3 crystal.
Свяжитесь с нами
BBO features good optical transparency from around 200nm to over 2µm, offers a high resistance to optical damage with power handling >3GW/cm2 for 1ns pulses at 1064nm. It is possible to use BBO Pockels cells at average power levels of hundreds of watts and power densities of several kW/cm2. In addition, BBO Q-switches have very low levels of piezo-electric resonances.
Свяжитесь с нами
Cr:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  crystal is an excellent material for passive Q-switching of Nd:YAG and  other Nd or Yb doped lasers in the wavelength range of 0.8 to 1.2 μm. One of the remarkable features of Cr:YAG is its high damage threshold (500-1000 MW/cm2). Its absorption band extends from 800 nm to 1200 nm and peaks at around 1060nm with a very large absorption cross section.
Свяжитесь с нами
Basically all Pockels cell drivers are made based on solid-state electronic technology, using high voltage transistors such as MOSFETs. Multiple high voltage transistors may have to be stacked, taking care to achieve an even distribution of voltage across those. Instead of using some heavily isolated floating gate drive circuitry for the different transistors, one may use certain advanced ideas such as implementing so-called avalanche switch stacks involving avalanche diodes and/or avalanche bipolar transistors.Device lifetimes can be very long, provided that properly engineered
Свяжитесь с нами
Main SpecificationsDimensionsAperture2×2 ~ 14×14 mm2Length0.1 - 12 mmOrientation[100] or [111] (±1°)Doping Concentration0.5 ~ 3.0 mol%Initial Absorption Coefficient0.5 ~ 6.0 cm-1 @ 1064 nmInitial Transmission5% ~ 95% Surface Flatness< λ/8 @ 633 nmEnd Surface Parallelism< 30”Chamfer≤ 0.1 mm × 45°Surface Quality20-10 [s-d] (MIL-PRF-13830B)CoatingAR (R<0.2% @1064nm) or according to customer’s requestLIDT≥ 500 MW/cm2The pulse width of Cr4+:YAG passively Q-switched lasers could be as short as 5 ns for diode pumped Nd:YAG lasers and the repetition could be as high a
Свяжитесь с нами
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate) are commonly used commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. KDP are also excellent electro-optic (EO) crystals with high EO coefficients, thus popularly used as EO modulators and Pockels cells for Q-switched lasers.
Свяжитесь с нами
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Свяжитесь с нами
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Свяжитесь с нами
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Свяжитесь с нами
Relate News
3 The main application of lithium tantalate crystal3.3 E-O Q-SwitchThe basis of laser Q-switched technology is a special optical component - a fast intracavity optical switch generally called Q-switch. The Q value is an indicator for evaluating the quality of the optical resonant cavity. The higher the Q value, the lower the required pump threshold and the easier it is for the laser to oscillate. The purpose of laser Q-switching technology is to compress the pulse width and increase the peak power.
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
IntroductionLithium tantalate (LiTaO3, referred to as LT), as an excellent multifunctional crystal material, has good piezoelectric, electro-optical and pyroelectric properties, and is ideal for making surface acoustic wave (SAW) filters, resonators, tuners, Q switches and pyroelectric detectors. Devices made from LT crystal (www.wisoptic.com) are widely used in the automotive electronics, 5G communications and infrared detectors, and have broad market prospects.In 1965, Ballman used the pulling method to grow LT single crystal for the first time.
WISOPTIC is using its newly-set coating machine to do in-house vacuum coatings on crystals and optical components.With our own coating machine and technique, we can provide customers products with excellent quality, e.g. higher surface quality, higher transmittance, and higher LIDT etc.Sorts of dielectric coatings (e.g. AR, HR, PR) are available for crystals (KDP/DKDP, KTP, RTP, BBO, LBO, LN, Nd:YAG, etc) and optical components (laser windows, mirrors, PBS, etc).
04 Theoretical study of thermal properties The above experiment shows that the BBO crystal (www.wisoptic.com) generates serious heat in the process of frequency quadrupling. It is known that the energy band gap of the BBO crystal is 6.56 eV, while the single photon energy of 266 nm and 532 nm lasers is 4.66 eV and 2.33 eV respectively. Theoretically, the crystal does not have single photon absorption of 266 nm and 532 nm lasers.
03 Experimental results and analysisBy optimizing the cavity length parameters of Nd:YVO4 (www.wisoptic.com) laser under high-power pump injection, a 1064 nm high peak power narrow pulse laser output with an average power of 26 W, a repetition frequency of 20 kHz, and a single pulse width of 5 ns was obtained when the 888 nm pump light power was 65 W; after the 1064 nm fundamental frequency infrared light was doubled by the LBO crystal, a 532 nm laser with a maximum power of 16 W was finally obtained, and the infrared to green light conversion efficiency reached 61.5%.
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
Introduction High-power all-solid-state deep ultraviolet (DUV) lasers have many important applications in scientific research, medical diagnosis, and industrial manufacturing, such as Raman spectroscopy, photobioimaging, integrated circuit etching, and precision micromachining, due to their compact structure, high single-photon energy, and good long-term stability.
Conclusion Considering comprehensive factors such as wide absorption bandwidth, large absorption cross section, long upper energy level lifetime (ms to tens of ms) (see Table 2), ion cross relaxation, increased quantum efficiency, and mature LD pump source, Tm3+ in the 2 μm band, Ho3+ and Er3+ in the 3 μm band must be one of the most important and basic laser sources in the mid-infrared band from 2 to 20 μm, and will compete with Nd3+ and Yb3+ in the 1 μm band.
4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOAs a relatively new nonlinear optical material, CPPLN has a high nonlinear coefficient and a large gain bandwidth. In the foreseeable future, it will have more applications in the fields of industry and medicine. With the increasing demand for polarized crystal materials such as PPLN and CPPLN, the electric field polarization technology of crystals will also have further breakthroughs, and the processing accuracy of polarized crystals will continue to improve.
x

Отправлено успешно

Мы свяжемся с вами как можно скорее

По адресу: