Cr: Tm: Ho: YAG; 2094nm; HTC:YAG-manufacture,factory,supplier from China

(Total 24 Products for Cr: Tm: Ho: YAG; 2094nm; HTC:YAG)
Items Specifications Material CTH:YAG (Cr, Tm, Ho - doped YAG)Doping ExtentCr: 0.3~1.2 at%; Tm: 5~6 at%; Ho: 0.3~0.4 at% Crystalline Direction[111] (± 5°)DimensionsDia 3~6 (+0/-0.05) mm × 50~120 (±0.5) mm (customized)Extinction Ratio> 25 dBSingle Pass WFD < λ/8 @633 nm over central areaSurface Quality 10-5 [s-d] per MIL-O-13830BClear Aperture> 90% over central areaEnd-surface Parallelism< 20"Perpendicularity< 5'End-surface Flatness< λ/8 @633 nmChamfer0.2 ± 0.05 mm × 45°Laser CoatingAR/AR @ 209
Свяжитесь с нами
Cr: YAG is an excellent crystal for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength from 800 nm to 1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is used widely to substitute for many traditional materials such as LiF, organic Dye and color centers.
Свяжитесь с нами
Main SpecificationsDimensionsAperture2×2 ~ 14×14 mm2Length0.1 - 12 mmOrientation[100] or [111] (±1°)Doping Concentration0.5 ~ 3.0 mol%Initial Absorption Coefficient0.5 ~ 6.0 cm-1 @ 1064 nmInitial Transmission5% ~ 95% Surface Flatness< λ/8 @ 633 nmEnd Surface Parallelism< 30”Chamfer≤ 0.1 mm × 45°Surface Quality20-10 [s-d] (MIL-PRF-13830B)CoatingAR (R<0.2% @1064nm) or according to customer’s requestLIDT≥ 500 MW/cm2The pulse width of Cr4+:YAG passively Q-switched lasers could be as short as 5 ns for diode pumped Nd:YAG lasers and the repetition could be as high a
Свяжитесь с нами
Main SpecificationsDimensionsLength3 ~ 150 mm (± 0.5 mm)Diameter2 ~ 10 mm (+0.00, -0.05 mm)Tm Concentration0.5 ~ 8.0 atm%Orientation[111] (± 1°)Wavefront Distortionλ/4 per inch @ 633 nmBarrel FinishFine ground (400#)End Surface Parallelism ≤ 10”Perpendicularity≤ 5’End Surface Flatnessλ/10 @ 633 nmEnd Surface Quality10-5 [s-d] (MIL-PRF-13830B)Chamfer0.15 ± 0.05 mm @ 45°CoatingAR (R<0.25% @ 2013 nm)
Свяжитесь с нами
Highly doped (50%) Erbium YAG is a well-known laser source for producing 2940nm emission, commonly used in medical (e.g. cosmetic skin resurfacing), and dental (e.g. oral surgery) applications due to the strong water and hydroxapatite absorption at this wavelength.Low doped (< 1%) Erbium YAG hase been studied as an efficient means to generate high power and high energy 1.6 micron 'eye-safe' laser emission thru 2 level resonant pumping schemes.
Свяжитесь с нами
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Свяжитесь с нами
Alumina Ceramic Reflectors are designed primarily for use in pumping chambers for many diverse laser systems, e.g. YAG lasers.
Свяжитесь с нами
Tm3+:YLF crystal has a high absorption peak around 792 nm which locates in the diode pumping range, and also has a cross-relaxation process that provides the possibility for each absorbed pump photon to produce to ions at higher laser energy level. Tm3+: YLF laser is very suitable as a pump source for Ho3+:YAG laser. This is due to the good overlap of the emission band of Tm3+:YLF and the absorption band of Ho3+:YAG, and the ability to produce a linearly polarized output.
Свяжитесь с нами
Diffusion Bonding Crystal consists of two, three or more parts with different types. They are often used to decrease thermal lens effect, that is conducive to the stability of lasers and high-power laser operation.The Crystals being bonded could be a laser crystal doped with laser-active ions, and its counterparts without dopants (e.g. YAG + Nd :YAG).
Свяжитесь с нами
Diffusion Bonded Crystal (DBC) is a crystalline solid used in photo optic applications. It consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Свяжитесь с нами
Yb:YAG's advantage is a wide pump band and an excellent emission cross section. It is ideal for diode pumping. The broad absorption band enables Yb:YAG to maintain uninterrupted pump efficiency across the typical thermal shift of diode output. High efficiency means a relatively small dimension Yb:YAG laser crystal will produce high power output. Based on the YAG host crystal, Yb:YAG can be quickly integrated into the laser design process.
Свяжитесь с нами
Nd: YLF (Nd:LiYF4) is a laser material that acts as an alternative to Nd:YAG. It is very suitable for working in mode-locked state to make pulse lasers at wavelength 1053nm, 1047nm, 1313nm, 1324nm and 1370 nm. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold.
Свяжитесь с нами
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Свяжитесь с нами
Nd:YAG (Neodymium Doped Yttrium Aluminum Garnet, Nd:Y3Al5O12) has been and continues to be the most mature and most  widely used crystals for lasers, no matter solid state or lamp pumped, CW or pulsed. It possesses a combination of properties uniquely  favorable for laser operations. Nd:YAG crystals are used in all types of solid-state lasers systems-frequency-doubled continuous wave, high-energy Q-switched, and so on.
Свяжитесь с нами
Erbium doped Yttrium Aluminum Garnet (Er:Y3Al5O12 or Er:YAG) combine various output wavelength with the superior thermal and optical properties of YAG. The emission wavelength of Er:YAG with doping concentration of 50% is 2940nm, which is at the position of water absorption peak and can be strongly absorbed by water molecules. Therefore, Er:YAG laser is widely used in plastic surgery and dentistry.
Свяжитесь с нами
Nd:YLF is an excellent crystal that is very suitable for working in mode-locked mode to obtain short pulse laser. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold. Nd:YLF crystal has obtained important applications in inertial confinement laser fusion research projects.
Свяжитесь с нами
Cr:YAG  or Cr4+:YAG (Chromium doped Ytterium Aluminum Garnet, Cr:Y3Al5O12)  is an excellent  and widely used electro-optic material for passive Q-switching diode pumped or lamp-pumped Nd:YAG, Nd:YLF, Nd:YVO4 and other Nd or Yb doped lasers at wavelength 800~1200 nm. With advantages of chemical stability, durable, UV resistant, good thermal conductivity and high damage threshold (>500 MW/cm2 ) and being easy to be operated, Cr:YAG is popularly used to substitute for many traditional materials such as LiF, organic dyes and color centers.
Свяжитесь с нами
The Ceramic Laser Reflectors are high reflectance cavities used in solid state and CO2 laser systems. They are built either as a one-piece or two-piece system based on customer requirement.Ceramic cavities produce diffuse reflectance, which offers a very uniform beam profile. This diffuse reflectance also distributes light and consequently decreases hot spots in the pumped medium. These completely dense materials (e.g. Al2O3) exhibit higher strength and scratch resistance than traditional polymeric and thermoplastic materials.
Свяжитесь с нами
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Свяжитесь с нами
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Свяжитесь с нами
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers.  Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes. But the dye molecules in the polymer matrix might degradate in a limited time by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Свяжитесь с нами
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Свяжитесь с нами
Ceramic Laser Reflector (Ceramic Laser Cavity) works particularly well in Ruby, Nd:YAG, or Alexendrite laser pumping chambers and can be a highly cost effective alternative to metal coated reflectors. Compared to metal reflectors, ceramic units offer higher reflectivity and therefore enhanced laser power. Surfaces can be sealed and coated with a solarization-resistant glaze to give high bulk reflectivity.
Свяжитесь с нами
Relate News
1. 4  ~ 3 μm laser crystals doped with Er2+, U4+, Ho3+, Dy3+  As an active ion, Ho3+ has achieved laser output in the ~3 μm band (5I6→5I7). In 1976, researchers first realized 2.9 μm laser output in Ho:YAP crystal. In 1990, Bowman et al. obtained 2.85 μm and 2.92 μm laser outputs in Ho:YAP crystals, and obtained 2.92 μm band-tuned laser outputs in Ho:YAP crystals in the following year. In 2017, Nie et al. pumped Ho, Pr: LiLuF4 crystals with a 1 150 nm Raman fiber laser, achieving 2.95 μm watt-level laser output for the first time. In 2018, Zhang et al.
1.2 Near-stoichiometric Lithium Tantalate Crystal Most of the lithium tantalate crystals currently used are grown from melts with the same composition ratio, which is generally called the same composition lithium tantalate (CLT). However, large number of defects affect the physical properties of the CLT crystal, so researchers have conducted study on near-stoichiometric lithium tantalate (NSLT) with less material defects and better physical properties.
2. Fabrication of Lithium Tantalate Crystal2.1 Fabrication of same composition lithium tantalate crystalThe same composition Lithium tantalate (CLT) crystals are often fabricated by mixing high-purity tantalum pentoxide with high-purity lithium carbonate at a stoichiometric ratio of 0.95:1 (molar ratio), and are prepared by the crucible pulling method. The quality of LiTaO3 crystal (www.wisoptic.com) is generally affected by factors such as raw material ratio, pulling speed, seed crystal quality, crucible shape and type.
The variant of refractive indices with temperature is an essential crystal parameter in nonlinear optics. it is well known that the wavelength at which 90° phase-matched 2nd-harmonic era happens depends on temperature. the variation of this wavelength with temperature can be predicted with a understanding of the variant of the refractive indices with temperature and is cited on this paper because the tuning price.
Based on the basic principles of laser damage, researchers have found a breaking through point to solve the problem of laser damage to optical components. But it is very difficult to effectively suppress the source of laser damage in the manufacturing process. Given the variety and complexity of the manufacturing process of optical components, it is necessary to establish the link between the defect formation and the manufacturing process.
Laser damage induced by microscopic defects in optical componentsAccording to the above numerical analysis results, it can be seen that cracks may be generated around the nodule seed and propagate along the radial direction.
2.1 Manipulating and understanding laser damage precursors through material growth processesCombined with the statistical model, information such as precursor density and threshold distribution can be extracted from the damage probability curve, which indirectly reflects the information of the precursor. The analysis shows that the KDP crystal (www.wisoptic.com) mainly contains a precursor with a threshold distribution.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
2.2 Fabrication of lithium tantalate crystal with near stoichiometric ratioThe preparation of near-stoichiometric lithium tantalate (NSLT) crystals is difficult. The current methods mainly include: the double crucible method, the flux pulling method, the float zone method and the gas phase exchange equilibrium method. 2.2.1 The double crucible methodIn the double crucible method, the melt material needs to be continuously added to the crucible during the crystal preparation process to keep the melt composition unchanged.
x

Отправлено успешно

Мы свяжемся с вами как можно скорее

По адресу: