Beta-Barium Borate Crystal-manufacture,factory,supplier from China

(Total 24 Products for Beta-Barium Borate Crystal)
Beta-BBO crystal is an important nonlinear optical crystal with combination of unique optical properties, such as broad transmission and phase matching ranges, large nonlinear coefficient, high damage threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth harmonic generation of Nd:YAG lasers, and the best NLO material for the fifth harmonic generation at 213 nm.
Свяжитесь с нами
Barium Borate exists in three major crystalline forms: alpha, beta, and gamma. The low-temperature beta phase converts into the alpha phase upon heating to 925 °C. β-BBO differs from α-BBO by the positions of the barium ions within the crystal. Both phases are birefringent, however α-BBO has centric symmetry and thus does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Свяжитесь с нами
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Due to the low piezoelectric coupling coefficients of BBO, BBO Pockels cells function at repetition rates of hundreds of kilohertz.
Свяжитесь с нами
High temperature phase of α-BBO Crystal (BaB2O4) is one of the excellent birefringent crystals. It is characterized by large birefringent coefficient and wide transmission window ranged from 189nm to 3500nm. Due to its high chemical stability and medium hardness, α-BBO is fabricated easily into many kinds of optical components.The physical, chemical, thermal and optical properties of α-BBO are similar to those of β-BBO.
Свяжитесь с нами
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Свяжитесь с нами
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Свяжитесь с нами
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low piezoelectric ringing makes this Pockels cell attractive for the control of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Свяжитесь с нами
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Свяжитесь с нами
High temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes.
Свяжитесь с нами
The periodic polarized KTP (PPKTP) is a novel nonlinear optical material that can be customized to achieve all of the nonlinear applications required in the entire KTP crystal transmission band, without the phase matching limitations of conventional KTP. Moreover, the effective nonlinear coefficient of PPKTP is about 3 times higher than that of conventional KTP. In the nonlinear application of conventional KTP, the crystal must have a single domain structure, but PPKTP crystal has an artificially induced periodic domain structure.
Свяжитесь с нами
KTA (Potassium Titanyle Arsenate, KTiOAsO4 ) is a nonlinear optical crystal similar to KTP in which atom P is replaced by As. It has good non-linear optical and electro-optical properties, e.g.
Свяжитесь с нами
LN Crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.As one of the most thoroughly characterized nonlinear optical materials, LiNbO3 is suitable for a variety of frequency conversion applications. For example, it is widely used as frequency doublers for wavelength >1 μm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices.
Свяжитесь с нами
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Свяжитесь с нами
LBO (LiB3O5) is a kind of non-linear optical crystal with good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). So LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Свяжитесь с нами
Diffusion bonded crystal consists of two, three or more parts of crystals with different dopants or same dopant with different doping levels. This material is commonly made by bonding one laser crystal with one or two undoped crystals by precise optical contact and further processing under high temperature.
Свяжитесь с нами
KTA (Potassium Titanyle Arsenate, KTiOAsO4 ) is a nonlinear optical crystal similar to KTP in which atom P is replaced by As. It has good non-linear optical and electro-optical properties, e.g.
Свяжитесь с нами
Nd:YAG (Neodimium Doped Yttrium Aluminum Garnet) has been and continue to be the most widely used laser crystal for solid-state lasers.
Свяжитесь с нами
Tm3+:YLF crystal has a high absorption peak around 792 nm which locates in the diode pumping range, and also has a cross-relaxation process that provides the possibility for each absorbed pump photon to produce to ions at higher laser energy level. Tm3+: YLF laser is very suitable as a pump source for Ho3+:YAG laser. This is due to the good overlap of the emission band of Tm3+:YLF and the absorption band of Ho3+:YAG, and the ability to produce a linearly polarized output.
Свяжитесь с нами
Nd: YLF (Nd:LiYF4) is a laser material that acts as an alternative to Nd:YAG. It is very suitable for working in mode-locked state to make pulse lasers at wavelength 1053nm, 1047nm, 1313nm, 1324nm and 1370 nm. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold.
Свяжитесь с нами
Gray Track Resistant (GTR) KTP crystals developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band. So it's very suitable for high power density applications, where regular flux-grown KTP crystals will suffer from gray track damage.GTR-KTP crystal has gray track resistance sufficiently greater than typical flux-grown KTP.
Свяжитесь с нами
Compared with congruent LN (cLN) crysal, the electro-optic coefficient, nonlinear optical coefficient, periodic polarization reversal voltage and applied photorefractive properties of stoichiometric LN (sLN) crystal are greatly improved. With such excellent physical properties and wide application prospects, sLN crystal has rapidly become a competitive optoelectronic material.sLN crystals are expected to be thermodynamically stable up to their melting temperature at 1170°C, while keeping a largerelectrical resistivity than cLN crystals by one order of magnitude at any temperature.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz. The transmission range of RTP is 350 nm to 4500 nm.RTP crystal is widely used in laser Q-switching system with high frequency repetition, high power and narrow pulse width.
Свяжитесь с нами
Tm:YAP crystal is one of the most important crystals for LD pumping 2μm laser. The anisotropic structure of Tm:YAP produces anisotropic emission cross section. Tm:YAP crystals with different orientations have different output wavelengths and operating forms for different functions. Compared with the physical and chemical properties of Tm:YAG, the 795nm pump absorption band of Tm:YAP matches the emission wavelength of commonly used high-power AlGaAs diodes better.
Свяжитесь с нами
RTP (RbTiOPO4) is an isomorph of KTP crystal. RTP single crystals are grown in WISOPTIC by a slow-cooling flux method. RTP has many advantages e.g. large nonlinear optical coefficient, large E-O coefficient, high damage threshold (about 1.8 times of KTP), high resistivity, high repetition rate, no hygroscopy and no induced piezo-electric effect with electrical signals up to 60 kHz.
Свяжитесь с нами
Relate News
3 The main application of lithium tantalate crystal3.2 OscillatorAn oscillator is an energy conversion device that converts DC power into AC power with a certain frequency. This circuit is called an oscillation circuit. The oscillator achieves free oscillation through the mutual conversion between magnetic field energy and electric field energy.Oscillators are divided into RC oscillators, LC oscillators and crystal oscillators. The crystal oscillator has a piezoelectric effect, and the crystal will deform when a voltage is applied to the two poles of the wafer.
Conclusion Lithium tantalate material has a large pyroelectric coefficient, high Curie temperature, small dielectric loss factor, low heat melt per unit volume, small relative dielectric constant, and stable performance. It is a good ferroelectric and piezoelectric material. It also has extraordinary properties. Because of its linear optical properties, lithium tantalate (LT crystal, www.wisoptic.com) has gradually become a popular material used in communications, electronics and other fields.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterPeng et al. used ion etching to process lithium tantalate (LT) crystals to obtain a high fundamental frequency crystal resonator. They used this crystal resonator to design a high-frequency broadband filter, which improved the operating frequency and reliability of the filter and increased the number of The bandwidth of the filter ensures the high temperature stability and low insertion loss of the filter.
1.3 Doping of Lithium Tantalate CrystalDifferent fields have different requirements for the properties of lithium tantalate crystals. When being used to prepare high-density and large-capacity holographic information storage devices, LiTaO3 crystals need to have excellent photorefractive properties. Due to the particularity of the crystal structure of LiTaO3, its physical properties can be adjusted through doping, for example, the widely used photorefractive doping.
2.3 Lithium tantalate single crystal filmAfter the 1980s, thin film preparation technology has developed rapidly. Currently, the commonly used preparation technologies of lithium tantalate single crystal (www.wisoptic.com) thin film mainly include chemical vapor deposition, physical vapor deposition, magnetron sputtering and sol-gel method.The chemical vapor deposition method synthesizes a thin film on a substrate through a chemical reaction and accurately controls the chemical composition of the product. It has the characteristics of low stress and good quality.
04 Theoretical study of thermal properties As can be seen from Figure 5 (a), when the BBO crystal (www.wisoptic.com) matching temperature is 60 ℃, as the 266 nm deep ultraviolet laser power gradually increases from 0.32 W to 1.24 W, 2.09 W and 2.25 W, the fitted nonlinear absorption coefficient βNLA also increases continuously, from 0 to 0.079, 0.128, and 0.189 cm/GW, respectively.
2. Theoretical analysis2.2 Design of CPPLN crystal structureIn order to achieve better temperature robustness and higher frequency doubling efficiency on the same CPPLN crystal, we designed the crystal structure of CPPLN. The schematic diagram of CPPLN for frequency doubling from 1064nm to 532nm is shown in Figure 1. The incident beam with fundamental frequency is set to be e-light, that is, its polarization direction is horizontal. At the same time, the output beam is also set to be e-light.
IntroductionLithium tantalate (LiTaO3, referred to as LT), as an excellent multifunctional crystal material, has good piezoelectric, electro-optical and pyroelectric properties, and is ideal for making surface acoustic wave (SAW) filters, resonators, tuners, Q switches and pyroelectric detectors. Devices made from LT crystal (www.wisoptic.com) are widely used in the automotive electronics, 5G communications and infrared detectors, and have broad market prospects.In 1965, Ballman used the pulling method to grow LT single crystal for the first time.
2. Theoretical analysis2.1 Temperature robustnessTemperature robustness refers to the stability of the frequency-doubled crystal with respect to temperature. Specifically, when the temperature fluctuates, the power of the frequency-doubled light will not be greatly affected. The influence of temperature on the frequency doubling process mainly comes from the influence on the phase mismatch.
2.2 Fabrication of lithium tantalate crystal with near stoichiometric ratioThe preparation of near-stoichiometric lithium tantalate (NSLT) crystals is difficult. The current methods mainly include: the double crucible method, the flux pulling method, the float zone method and the gas phase exchange equilibrium method. 2.2.1 The double crucible methodIn the double crucible method, the melt material needs to be continuously added to the crucible during the crystal preparation process to keep the melt composition unchanged.
x

Отправлено успешно

Мы свяжемся с вами как можно скорее

По адресу: